HWRM 403 GROUNDWATER MODELING (THEORY)

PRE-REQUISITE: HWRM-102

LEARNING OUTCOMES

Following are the learning outcomes of the course:

- Student will learn about damental Concepts of Ground Water Modeling
- Student will learn about Steady and Unsteady Flow of Ground Water
- Student will learn about Ground Water Modeling Structure its Types
- Student will learn about Transient Flow
- Student will learn about Solute Transport Modeling

CONTENTS

Groundwater Modeling, Flow Modelling, Salute transport Modelling, Numerical Models, Transient Models, Flow nets.

THEORY

Unit-1 Fundamental Concepts of Ground Water Modeling

- 1.1. Basic concepts of groundwater modeling
- 1.2. Systems analysis and Models
- 1.3. Equations of numerical methods
- 1.4. Governing equations of ground water modeling
- 1.5. Derivation of governing equations

Unit-II Steady and Unsteady Flow of Ground Water

- 2.1. Steady state ground water flow
- 2.2. Unsteady state ground water flow
- 2.3. Solution methods for groundwater modeling.
- 2.4. Regional groundwater flow

Unit-III: Ground Water Modeling Structure its Types

- 3.1. The conceptual model and grid design
- 3.2. Types of ground water models
- 3.3. Ground water modeling layers
- 3.4. Types of grids
- 3.5. Data needs for ground water modeling
- 3.6. Assigning parameter values, types of boundaries,
- 3.7. Simulation boundaries, sources and sinks: injection and pumping wells
- 3.8. Finite difference models
- 3.9. Finite element models

Unit-IV: Transient Flow

4.1. Transient simulating

- 4.2. Model execution and the calibration process
- 4.3. Contaminant Transport
- 4.4. Advection, Dispersion & Diffusion, Adsorption, Boundary conditions

Unit-V: Solute Transport Modeling

- 5.1. Solute Transport Modeling,
- 5.2. Transport Models
- 5.3. Solution methods
- 5.4. Sequence of running of transport models
- 5.5. Limitations of models

TEACHING – LEARNING STRATEGIES

- Lecture based examination
- Presentation/seminars
- Class discussion
- Quizzes

ASSIGNMENTS – TYPE AND NUMBER WITH CALENDAR

It is continuous assessment. The weightage of Assignments will be 25% before and after midterm assessment. It includes:

- classroom participation,
- attendance, assignments and presentation,
- homework
- attitude and behavior,
- hands-on-activities,
- short tests, quizzes etc.

ASSESSMENT AND EXAMINATIONS:

Sr. No.	Elements	Weightage	Details
1.	Mid Term Assessment	35%	It takes place at the mid-point of the semester
2.	Formative Assessment	25%	It is continuous assessment. It includes: classroom participation, attendance, assignments and presentation, homework, attitude and behavior, hands-on-activities, short tests, quizzes etc.
3.	Final Assessment	40%	It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.

RECOMMENDED TEXT BOOKS / SUGGESTED READINGS

- 1. Anderson, M.P & Woessner. W. W. (2015) Applied *Groundwater Modeling*. Second Edition. Elsevier Inc.
- 2. Jani, J. (2011). A GIS-based Method for Groundwater Modelling. University of Sheffield.
- 3. Howard S. W, Simon A. M. and Li. X. (2010). *Groundwater Modelling in Arid and Semi-Arid Areas*. Cambridge University Press.
- 4. Wang, H.F and Anderson, M.P. (1995) *Introduction to Groundwater Modeling*. AP Academic Press, Inc.
- 5. Todd, D.K., and Mays, L.W., (2008) Groundwater Hydrology, 3rd edition, Wiley.

HWRM 403 GROUNDWATER MODELING (LAB)

PRE-REQUISITE: HWRM-102

LEARNING OUTCOMES

Following are the learning outcomes of the course:

- Student will learn about Ground Water Modeling
- Student will learn about Development of Steady and Transient Flow
- Student will learn about Practical Performance of Ground Water Models

CONTENTS

PRACTICAL

Unit-1 Ground Water Modeling

- 1.1. Introduction to Groundwater Modeling Code (MODFLOW)
- 1.2. Introduction to different Groundwater Modeling Software's. and its GUI's

Unit-II Development of Steady and Transient Flow

- 2.1. Development of a Steady state groundwater flow model.
- 2.2. Development of a Transient groundwater flow model.

Unit-III: Practical Performance of Ground Water Models

- 3.1. Practical performance of MODEFLOW
- 3.2. Practical Performance of MT3DMS

TEACHING – LEARNING STRATEGIES

- Lecture based examination
- Presentation/seminars
- Class discussion
- Quizzes

ASSIGNMENTS - TYPE AND NUMBER WITH CALENDAR

It is continuous assessment. The weightage of Assignments will be 25% before and after midterm assessment. It includes:

- classroom participation,
- attendance, assignments and presentation,
- homework
- attitude and behavior,
- hands-on-activities,
- Short tests, quizzes etc.

ASSESSMENT AND EXAMINATIONS:

Sr. No.	Elements	Weightage	Details
1.	Mid Term Assessment	35%	It takes place at the mid-point of the semester
2.	Formative Assessment	25%	It is continuous assessment. It includes: classroom participation, attendance, assignments and presentation, homework, attitude and behavior, hands-on-activities, short tests, quizzes etc.
3.	Final Assessment	40%	It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.

RECOMMENDED TEXT BOOKS / SUGGESTED READINGS

- 1. Anderson, M.P & Woessner. W. W. (2015) Applied *Groundwater Modeling*. Second Edition. Elsevier Inc.
- 2. Jani, J. (2011). A GIS-based Method for Groundwater Modelling. University of Sheffield.
- 3. Howard S. W, Simon A. M. and Li. X. (2010). *Groundwater Modelling in Arid and Semi-Arid Areas*. Cambridge University Press.
- 4. Wang, H.F and Anderson, M.P. (1995) *Introduction to Groundwater Modeling*. AP Academic Press, Inc.

Todd, D.K., and Mays, L.W., (2008) Groundwater Hydrology, 3rd edition, Wiley.